The Effect of Cation on Kinetic Properties of Chloroaluminate Anions. $^{27}\mathrm{Al}$ NMR in Dialkylimidazolium Chloride-AlCl $_3$ and LiCl-AlCl $_3$ Melts Kazuhiko ICHIKAWA,* Mitsunori IZUMI, Takashi JIN,[†] and Toshiyuki MATSUMOTO Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060 †Section of Physiology, Research Institute of Applied Electricity, Hokkaido University, Sapporo 060 We have carried out the 27 Al NMR measurements of spectra and logitudinal magnetization recovery curves for 1-methyl-3-butylimidzolium chloride (DIMC1)-AlCl $_3$ at 65±1 mol% AlCl $_3$ and LiCl-AlCl $_3$ melt at 63±1 mol% AlCl $_3$. The lifetime of Al $_2$ Cl $_7$, τ_A , increases with increasing the size of cations from Li $^+$, Py $^+$ (butylpyridinium cation) to DIM $^+$. Room temperature chloroaluminate melts have been employed extensively for fundamental use of electrochemical, spectroscopic, and photo-chemical studies. They have been also formulated for practical use as aluminum electroplating baths. Their function is developed by the adjustable Lewis acid-base properties, which can be represented by the following equilibrium: $$2A1C1_{4}^{-}$$ $A1_{2}C1_{7}^{-} + C1^{-}$ (1) where $\mathrm{Al_2Cl_7^-}$ is a Lewis acid and $\mathrm{Cl_1^-}$ is a Lewis base. This equilibrium is an autosolvolysis reaction which is analogous to water autoprotolysis: $\mathrm{Al_2Cl_7^-}$ plays the role of $\mathrm{H^+}$ in aqueous solution. 1,2 It is therefore significant to elucidate the effect of the size of cation on the kinetic properties of $\mathrm{Al_2Cl_7^-}$, or its own lifetime τ_{A} . This paper reports the effects of the size of cations on the fractional populations $X_{A,B}$ between $Al_2Cl_7^-(A)$ and $AlCl_4^-(B)$, and their chemical exchange lifetimes $\tau_{A,B}$ for the 1-methyl-3-butylimidazolium chloride (DIMCl)-AlCl $_3$ and LiCl-AlCl $_3$ melts. The spin-lattice relaxation rates $R_{1,A,B}^*$ have been also obtained on the basis of both experimental and theoretical studies on the 27 Al longitudinal magnetization recovery (lmr) curves. The DIMCl and LiCl, and their binary mixtures with ${\rm AlCl}_3$ were prepared by the method described in the literature. The manipulation of all materials was performed in an argon-filled glove box. We carried out the 27 Al NMR measurements of molten DIMCl-AlCl $_3$ at 65±1 mol% between 20 and 100 °C and LiCl+AlCl $_3$ at 63±1 mol% at 160 °C. The 27 Al resonance frequencies and the time intervals t $_d$ between the last 90° pulse and the onsets of data acquisition were ca. 52.1 MHz and 400 µs on a Varian XL-200, and ca. 26.1 MHz and 366 µs on a Bluker SXP4-100, respectively. The observed lmr curves have been obtained from the initial intensity, M $_Z$ (τ), of the free-induction decays,by using the inversion recovery (or π - τ - π /2) method, until M $_Z$ (τ)/M $_Z$ ° reaches ca. 0.7-0.9. The 27 Al NMR spectra of molten DIMCl-AlCl $_3$ at 65±1 mol% AlCl $_3$ between 20°C and 100°C. and of molten LiCl-AlCl $_3$ at 63±1 mol% AlCl $_3$ and 160°C are shown in Figs. 1 and 2. The 27 Al resonance lineshape depends upon t $_d$ for the DIMCl-AlCl $_3$ melt. $^{5-7}$) Since the large signal attributed to 27 Al in Al $_2$ Cl $_7$ (A) masked a much smaller contribution from AlCl $_4$ (B), each of the spectra showed a single peak for t $_d$ =30 μ s. For t $_d$ =400 μ s partially resolved peaks were observed [see Fig. 1], where the partially resolved lineshapes located at high and low fields can be assigned to B and A, respectively. Increasing the temperature gives rise to an increase in the intensity of the resonance line located at low-field (i.e., the concentration of Al $_2$ Cl $_7$) [see Fig. 1]. The experimental points of the lmr curves are shown in Figs. 3 and 4. At the lower temperatures the non-linear logarithmic lmr curves were observed for molten DIMCl-AlCl $_3$. Fig. 1. 27 Al spectra for molten DIMCl-AlCl₃ at 65±1 mol% AlCl₃. Fig. 2. 27 Al spectrum for molten LiCl-AlCl₃ at 63±1 mol% AlCl₃. Fig. 3. 27 Al lmr curves for molten DIMCl-AlCl₃ at 65±1 mol% AlCl₃. Fig. 4. 27 Al lmr curves for molten LiCl-AlCl₃ at 63±1 mol% AlCl₃. Under the conditions of chemical exchange between the two sites ${\rm Al}_2{\rm Cl}_7^-(A) \ {\rm and} \ {\rm AlCl}_4^-(B) \ {\rm the} \ {\rm time} \ {\rm evolution} \ {\rm of} \ {\rm the} \ {\rm total} \ {\rm longitudinal} \ {\rm magnetization} \ {\rm M}_Z^-(\tau)(={\rm M}_{Z_+A}^-(\tau)+{\rm M}_{Z_+B}^-(\tau)) \ {\rm is} \ {\rm given} \ {\rm by}$ $M_Z(\tau) = C_1 \exp(-R_{1.A}\tau) + C_2 \exp(-R_{1.B}\tau),$ where C_1 and C_2 are defined in Eqs. 13-17, and $R_{1.A.B}$ is given by $R_{1.\alpha}^{\star}$ and τ_{lpha} in Eqs. 8-10 of Ref. 8. Here, we assume for simplification that no contributions from ${\rm Al}_2{\rm Cl}_6$ or higher polymers (e.g., ${\rm Al}_3{\rm Cl}_{10}^-$) appear in the NMR data of the chloroaluminate melts. $^{5-7}$) $R_{1,A,B}$ should be obtained from the simulation of the non-single-exponential decay of the observed lmr curves, 3) where $R_{1,A,B}$ is equal to $R_{1,A,B}^{\star}$ for the very slow exchange or $R_{1,\alpha}^{\star} \tau_{\alpha}$ » 1. The reasonable simulation of the observed lmr curves and spectra for the DIMCl+AlCl3 melt was carried out on the base of the Bloch equations modified by chemical-exchange effects 8,9) and under the condition that $R_{2,\alpha}^*$ (i.e., the spin-spin relaxation rates) = $R_{1,\alpha}^*$ for most liquids. Here, the fractions of nuclei $f_{A,B}$ for A and B should be replaced by $f_{A,B}$ in Eq.12 of Ref. 9 because of $R_{2,\alpha}^{\star}$ $t_d \approx 1$ for the case of $R_{2,\alpha}^{*} \approx 5 \times 10^{3} s^{-1}$ and $t_{d} \approx 5 \times 10^{2} \ \mu s$. The LiCl+AlCl₃ melt shows the rapid chemical exchange (i.e., $R_{1,A}^{\star}\tau_{A}^{<0.5}$) because of the pure Lorenzian lineshape and the single-exponential decay of the lmr curve [see Figs. 3 and 4]. For the rapid exchange limit the slope of the linear lmr plots should be equal to $\langle R_1 \rangle$ (=f_A^{app} R_{1,A}^* + f_B^{app} R_{1,B}^*)^{8,10} because of $R_{1,A}^*$ t_d(=366µs) \approx 1 and $f_A^{app} \neq f_A$. Since $R_{1,A}^*$ and $R_{1,B}^*$ are almost equal to $4000\pm20 \text{ s}^{-1}$ and $100\pm10 \text{ s}^{-1}$ at 160°C , $\langle \text{R}_{1} \rangle$ becomes equal to 2230 s⁻¹. the other hand the slope of the observed line in Fig. 4 gives $2280\pm10~\mathrm{s}^{-1}$. From the above discussion it may be estimated as $R_{1.A}^{\star}$ $\tau_{A} < 0.5$ and $\tau_{\lambda} < 10^{-4} s.$ Table shows the effect of the size of cations Li⁺, butylpyridinium cation(Py⁺) and ethyl-butylimidazolium cation (DIM⁺) on the lifetime τ_A and the fractional population X_A of Al_2Cl_7^- . We can conclude that (1) X_A is almost given by the formal concentration of AlCl_3 and the contributions from the major species $\text{Al}_2\text{Cl}_7^-(A)$ and $\text{AlCl}_4^-(B)$, and (2) τ_A increases with increasing the size of cations. The above reaction (i.e., Eq. 1) of the exchange from AlCl_4^- to Al_2Cl_7^- is endothermic in the DIMCl-AlCl $_3$. The product Al_2Cl_7^- is, however, more stable than the reactant AlCl_4^- at the temperatures of interest because of the high entropy contribution. Table 1. The Effect of the Size of Cation on the Lifetime of Al_2Cl_7^- $\tau_{\tt A}$ and Anion Fractions $X_{\tt A}$ | Cation | mol% AlCl ₃ | t/°C | τ _A /s | X _A | |------------------|------------------------|------|----------------------|----------------| | Li ⁺ | 63 | 160 | <10 ⁻⁴ | | | Py+ 7) | 66 | 50 | 2.8×10^{-1} | 0.66 | | DIM ⁺ | 65 | 50 | >5x10 ⁻¹ | 0.66 | | | | | | | We thank Dr. Y. Sato (Faculty of Engineering, Tohoku University) for the loan of the mixture of ${\rm LiCl-AlCl}_3$ and Professor T. Ishikawa (Faculty of Engineering) for the loan of the crystalline ${\rm AlCl}_3$. The NMR measurements were carrid out with a Varian XL-200 and a Bluker SXP4-100 in the NMR Laboratory of the Faculty of Engineering in Hokkaido University. ## References - 1) C. R. Boston, "Advances in Molten Salt Chemistry," ed by J. Braunstein et al., Plenum Press, New York (1971), Vol.1, p.219. - 2) H. L. Chum and R. A. Osteryoung, "Ionic Liquids," ed by D. Inman and D. G. Lovering, Plenum Press, New York (1981), p.407. - 3) T. Matsumoto and K. Ichikawa, J. Am. Chem. Soc., 106, 4316 (1984). - 4) J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey, Inorg. Chem., 21, 1263 (1982). - 5) J. L. Gray and G. E. Maciel, J. Am. Chem. Soc., 103, 7147 (1981). - 6) J. S. Wilkes, J. S. Frye, and F. Reynolds, Inorg. Chem., $\underline{22}$, 3870 (1983). - 7) K. Ichikawa, T. Jin, and T. Matsumoto, J. Chem. Soc., Faraday Trans. 1, 85, 175 (1989). - 8) K. Ichikawa, J. Chem. Soc., Faraday Trans. 2, <u>82</u>, 1913 (1986). - 9) K. Ichikawa and T. Matsumoto, J. Magn. Reson., 63, 445 (1985). - 10) K. Ichikawa and T. Jin, Chem. Lett., 1987, 1179. (Received May 25, 1992)